CHEMISTRY (CHEM)

Subject-area course lists indicate courses currently active for offering at the University of Louisville. Not all courses are scheduled in any given academic term. For class offerings in a specific semester, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm).

500-level courses generally are included in both the undergraduate- and graduate-level course listings; however, specific course/section offerings may vary between semesters. Students are responsible for ensuring that they enroll in courses that are applicable to their particular academic programs.

Course Fees

Some courses may carry fees beyond the standard tuition costs to cover additional support or materials. Program-, subject- and course-specific fee information can be found on the Office of the Bursar website (http://louisville.edu/bursar/tuitionfee).

CHEM 503. Special Topics in Chemistry 1-3 Units

Prerequisite(s): As required by topic.

Description: An examination of one or more specified areas of Chemistry. Details announced each semester.

Note: Not applicable toward graduate degree in chemistry.

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 550. Group Theory and its Chemical Applications 3 Units

Term Typically Offered: Occasionally Offered

Prerequisite(s): One year of physical chemistry.

Description: Elementary group theory; the use of group theory to treat symmetry; application to atomic structure, molecular structure, spectroscopy, and reaction mechanisms.

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 555. Theory and Application of Computational Chemistry 3 Units

Prerequisite(s): CHEM 441 or CHEM 465 or PHYS 300.

Description: Theory and Application of Computational Chemistry will be a combined elective undergraduate and graduate level course. The purpose of the course is to provide students with the necessary knowledge such that they can examine chemical problems computationally and where required, use computational tools to benefit their own research. The course will emphasize practical applications of computers in chemistry, trends that define the appropriate methods for chemical studies, and elucidation of underlying theoretical methods. As the abstract nature of the field is frequently a learning barrier to many students, the course will incorporate a series of workshops to enable students to build their own computer programs and study chemical problems computationally.

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 557. Bio-Organic Phenomena 3 Units

Term Typically Offered: Spring Only

Prerequisite(s): One year of organic chemistry.

Description: Special topics in the biological chemistry area: e.g., chemical carcinogenesis; diet and cancer, food chemistry and polypeptides; proteins; carbohydrates; enzymes; hormone chemistry.

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 591. Chemistry for Teachers I 3 Units

Prerequisite(s): For graduate education majors; must have experience in teaching chemistry principles in elementary, middle, or secondary schools.

Description: Teaching pre-college chemistry with emphasis on curriculum content, laboratory procedures, and process skills.

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 620. Optical Spectrochemical Methods of Analysis 3 Units

Prerequisite(s): CHEM 527.

Description: Principles, instrumentation, and applications of atomic and molecular spectroscopic techniques used in the IR, VIS, and UV spectral regions.

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 621. Electroanalytical Chemistry 3 Units

Prerequisite(s): CHEM 527.

Description: Principles of modern voltammetric and potentiometric methods of chemical analysis including fundamental theory, instrumentation, and applications.

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 622. Analytical Separations 3 Units

Prerequisite(s): CHEM 527.

Description: Survey of major instrumental separation methods in chemistry and biochemistry with an emphasis on modern chromatographic techniques.

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 625. Advanced Analytical Chemistry 3 Units

Prerequisite(s): CHEM 527.

Description: A survey of theoretical and practical aspects of modern methods of analysis.

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 626. Special Topics in Analytical Chemistry 1-3 Units

Prerequisite(s): CHEM 528 and CHEM 529, or consent of instructor.

Description: Recent developments in selected areas of Analytical Chemistry.

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisite(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 628</td>
<td>Special Topics in Synthesis and Analysis</td>
<td>1</td>
<td>Completion of, or coregistration in, CHEM 528, or consent of instructor.</td>
<td>Current topics in high resolution NMR, mass spectrometry and organic synthesis. For class offerings for a specific term, refer to the Schedule of Classes.</td>
</tr>
<tr>
<td>CHEM 630</td>
<td>Advanced Topics in Chemical Analysis</td>
<td>1</td>
<td>Completion of, or co-registration in, CHEM 529, or consent of instructor.</td>
<td>A discovery-based approach to the solution of advanced problems in chemical analysis with an emphasis on separations, electrochemistry and X-ray crystallography. For class offerings for a specific term, refer to the Schedule of Classes.</td>
</tr>
<tr>
<td>CHEM 632</td>
<td>Chemical Education for Secondary Teachers</td>
<td>4</td>
<td>BS, BA, or minor in Chemistry, or consent of instructor.</td>
<td>In-depth examination of chemistry content for secondary teachers as aligned with national and state standards. Inquiry-based laboratory and diverse assessment of core concepts will be developed. Note: Does not count toward an advanced degree in Chemistry.</td>
</tr>
<tr>
<td>CHEM 645</td>
<td>Advanced Biochemistry I</td>
<td>4</td>
<td>CHEM 342.</td>
<td>Chemistry of amino acids, peptides, proteins, nucleotides and nucleic acids; methods of analysis and laboratory synthesis; enzyme properties, kinetics, ligand binding. Note: Lectures concurrent with CHEM 545; one added lecture hour each week covers advanced topics.</td>
</tr>
<tr>
<td>CHEM 647</td>
<td>Advanced Biochemistry II</td>
<td>4</td>
<td>CHEM 545.</td>
<td>Cellular metabolism of carbohydrates, lipids, amino acids and nucleotides; biomembrane phenomena; RNA, DNA and protein synthesis. Lectures concurrent with CHEM 547; one added lecture hour each week covers advanced topics.</td>
</tr>
<tr>
<td>CHEM 651</td>
<td>Independent Study</td>
<td>1-3</td>
<td>CHEM 515.</td>
<td>Credit according to achievement; limited to 3 hours per semester. For class offerings for a specific term, refer to the Schedule of Classes.</td>
</tr>
<tr>
<td>CHEM 652</td>
<td>Independent Study</td>
<td>1-3</td>
<td>CHEM 515.</td>
<td>Credit according to achievement; limited to 3 hours per semester. For class offerings for a specific term, refer to the Schedule of Classes.</td>
</tr>
<tr>
<td>CHEM 653</td>
<td>Main Group Chemistry</td>
<td>3</td>
<td>CHEM 515.</td>
<td>Survey of the descriptive chemistry of the main group elements and topics of current interest in main group chemistry such as bonding theories, reaction mechanisms, electronic materials, and catalytic materials. For class offerings for a specific term, refer to the Schedule of Classes.</td>
</tr>
<tr>
<td>CHEM 654</td>
<td>Advanced Coordination Chemistry</td>
<td>3</td>
<td>CHEM 515.</td>
<td>Survey of structure, bonding, and reactivity of the transition metal complexes. Covers topics such as organometallic and bioinorganic chemistry, group theory, and magnetism. For class offerings for a specific term, refer to the Schedule of Classes.</td>
</tr>
<tr>
<td>CHEM 655</td>
<td>Special Topics in Inorganic Chemistry</td>
<td>1-3</td>
<td>CHEM 515.</td>
<td>Current problems in inorganic chemistry. For class offerings for a specific term, refer to the Schedule of Classes.</td>
</tr>
<tr>
<td>CHEM 656</td>
<td>Special Topics in Inorganic Chemistry</td>
<td>1-3</td>
<td>CHEM 515.</td>
<td>Current problems in inorganic chemistry. For class offerings for a specific term, refer to the Schedule of Classes.</td>
</tr>
<tr>
<td>CHEM 659</td>
<td>Solid State Chemistry</td>
<td>3</td>
<td>CHEM 515 or equivalent course in organic chemistry.</td>
<td>Course content will include the synthesis methods, characterization and properties of solid-state materials. Various techniques of preparation of solid-state materials as well as advantages and disadvantages of each method are discussed. The main properties of interest are structural properties, magnetism and charge transport in solid state. Basic principles as well as methods of investigation and characterization of these properties will be discussed in this course. For class offerings for a specific term, refer to the Schedule of Classes.</td>
</tr>
</tbody>
</table>
CHEM 660. Advanced Physical Chemistry 3 Units
Prerequisite(s): One year of physical chemistry, one semester of atomic and molecular physics.
Description: Introduction to quantum chemistry.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 661. Chemical Thermodynamics 3 Units
Prerequisite(s): One year of physical chemistry.
Description: Advanced discussion of the principles of thermodynamics including an introduction to statistical thermodynamics; applications to chemical systems.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 665. Special Topics in Physical Chemistry 1-3 Units
Description: An examination of one or more specified areas of Physical Chemistry. Topics vary; details announced each semester.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 666. Special Topics in Physical Chemistry 1-3 Units
Description: An examination of one or more specified areas of Physical Chemistry. Topics vary; details announced each semester.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 667. Reaction Kinetics 3 Units
Prerequisite(s): One year of physical chemistry.
Description: Theory of the rate of chemical reactions; methods of studying reaction rates; reaction energetics; reactions in solution; chain reactions and inference of mechanism from rate studies.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 668. Electrochemistry 3 Units
Prerequisite(s): Consent of instructor.
Description: A thermodynamic and kinetic study of electrochemical phenomena, including electrical conductivity, electrophoresis, electrode potentials, and electrode processes.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 670. Chemistry of Heterocyclic Compounds and Alkaloids 3 Units
Prerequisite(s): One year each of organic and physical chemistry.
Description: Structures, reactivities, activities, and synthesis of heterocyclic systems including natural products and their uses in medicine.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 671. Advanced Polymer Chemistry 3 Units
Prerequisite(s): One year each of organic and physical chemistry.
Description: Polymer characterization, physical properties and structure. Conformational changes, elasticity, relaxation phenomena, size and chain distributions; application of microscopy, spectroscopy, magnetic resonance, and diffraction to polymers; liquid crystals.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 672. Quantum Chemistry 3 Units
Prerequisite(s): CHEM 561 or CHEM 660.
Description: Principles of quantum theory with applications to chemistry; and advanced treatment of atomic and molecular structure including Slater-Condon methods for atoms and LCAO-MO-SCF methods for molecules; introduction to ab initio methods.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 675. Special Topics in Organic Chemistry 1-3 Units
Prerequisite(s): One year of organic chemistry.
Description: Current problems in organic chemistry; organometallic chemistry; free radical reactions; carbohydrates and nucleosides; peptides.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 677. Mechanisms and Theory in Organic Chemistry 3 Units
Prerequisite(s): Two semesters of undergraduate organic chemistry.
Description: This course focuses on the mechanism and theory of classical and contemporary organic reactions, including acid and base catalysis, pericyclic reactions, metal-mediated reactions and radical and photochemical reactions.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 678. Advanced Organic Chemistry: General Survey 3 Units
Prerequisite(s): One year each of organic and physical chemistry.
Description: First semester (CHEM 678): an introduction to advanced physical organic chemistry, linear free energy relationship, kinetics, isotope effects and spectroscopic techniques as used in the interpretation of reaction mechanisms. Second semester (CHEM 679): an introduction to advanced organic chemistry emphasizing reactions and synthesis, and including spectral applications.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 679. Advanced Organic Synthesis 3 Units
Prerequisite(s): One year each of organic and physical chemistry.
Description: An introduction to advanced organic chemistry emphasizing modern synthesis reagents, reactions and their mechanisms.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)
CHEM 681. Modern Biochemistry I 3 Units
Prerequisite(s): One year each of organic and physical chemistry or consent of instructor.
Description: Chemistry and physical properties of proteins, other biopolymers; enzymatic reaction mechanisms and kinetics; bioenergetics.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 682. Modern Biochemistry II 3 Units
Prerequisite(s): CHEM 681 or consent of instructor.
Description: Carbohydrate, lipid, protein, and nucleic acid metabolism; endocrine control of metabolism and physiological activities.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 684. Biophysical Chemistry 3 Units
Prerequisite(s): CHEM 462 (or equivalent) and CHEM 545/CHEM 645, or consent of instructor.
Description: Basis theory and practical applications of modern biophysical methods; spectroscopy, hydrodynamics, thermodynamics, kinetics, and computational methods applied to protein and nucleic acid systems.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 685. Special Topics in Biochemistry 1-3 Units
Prerequisite(s): CHEM 547, or CHEM 647, or consent of instructor.
Description: Recent developments in selected areas of Biochemistry.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 687. Molecular Spectroscopy 3 Units
Prerequisite(s): CHEM 561 or CHEM 660.
Description: Molecular structure and interactions as determined by spectroscopic investigation. Rotational, vibrational and electronic spectroscopy as determined by ultraviolet, visible, infrared, microwave and radio frequency methods. Fundamental theory and experimental methods.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 688. X-Ray Crystallography and Its Application to Molecular Structure 3 Units
Prerequisite(s): CHEM 561 or CHEM 660.
Description: Crystal structure analysis. Topics include: symmetry, space groups, data collection, structure solution and refinement, structural analysis and presentation of scientific results.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 692. Research 1-15 Units
Prerequisite(s): 30 semester hours of undergraduate chemistry.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

CHEM 695. Seminar 1-3 Units
Grading Basis: Pass/Fail
Description: Required of all graduate students during residency. Students present one literature and one research seminar by the end of the 3rd semester; participate/attend in department seminar.
Note: Maximum credit allowed is 3 semester hours.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)