TRANSLATIONAL BIOENGINEERING (PHD)

This program was approved for students entering the university in the Summer 2025-Spring 2026 catalog year. For more information about catalog year, go to Catalog Year Information (https://catalog.louisville.edu/undergraduate/university-wide-unit-specific-policies/catalog-year/).

Doctor of Philosophy in Translational Bioengineering

Unit: Speed School of Engineering (https://engineering.louisville.edu/) (GS)

Department: Bioengineering (https://engineering.louisville.edu/academics/departments/bioengineering/)
Academic Plan Code(s): TBE_PHD

Program Information

The Translational Bioengineering PhD program is designed to provide multidisciplinary training in translational bioengineering preparing students to lead research and development in academia, industry and governmental agencies and/or to advance bioengineering technologies through start-up companies as entrepreneurs or within established biomedical companies. The intended audience includes applicants interested in a PhD degree in Bioengineering that have a minimum of a Bachelor's Degree in Engineering from an accredited program, or similar field.

In this program, students will have the opportunity to customize their graduate-level training by selecting one of four concentration areas and one of three tracks. The concentration areas offered include:

- · Bioelectronics and Biomedical Devices
- · Bioimaging and Biocomputational Modeling
- · Biomechanics and Rehabilitation
- · Molecular and Tissue Engineering

The three tracks offered are:

- · Traditional Bioengineering Research
- · Clinical Translational Research
- · Entrepreneurship of Bioengineering Technologies

Students who successfully complete the program will demonstrate excellence in designing and conducting research leading to an intellectual contribution to the field; demonstrate in-depth knowledge of their focus area and associated scientific literature; have an understanding of the clinical relevance and ethical implications of their research; have the ability to critically analyze, evaluate and interpret research methods and findings; and have the ability to effectively communicate knowledge of their focus area.

The requirements for the Doctor of Philosophy degree are explained in more detail in the Degree Requirements section (https://catalog.louisville.edu/graduate/general-policies-procedures-requirements/degree-requirements/) of this catalog.

Applicants must meet Graduate School admission requirements along with additional program requirements. Applicants must, as a minimum, have completed a Bachelor's Degree in Engineering from an accredited program or a similar field with a 3.25 cumulative GPA to be considered

for admission. Applicants with an undergraduate GPA of 3.0 will be considered for provisional acceptance. The ideal applicant will have completed or be in the process of completing either a Master's (MS or MEng) Degree in Engineering at the time of application.

Applicants must submit:

- a. A completed graduate application (https://graduate.louisville.edu/admission/apply/) for the Graduate School
- b. An application fee
- c. Official transcript(s) from each college attended certifying at least a bachelor's degree. All transcripts not in English must be certified as authentic and translated verbatim into English.
- d. Personal statement (include intended area of study and/or research interest, previous experience related to bioengineering and how the PhD in Translational Bioengineering will allow them to fulfill their career goals as identified by their focus are of interest).
- e. Resume/CV
- f. Three letters of recommendation
- g. Students whose native language is non-English or degree is from a non-US accredited institution are required to submit TOEFL scores (administered by the Educational Testing Service). A minimum TOEFL score of 79 or high on the internet-based test is required. Alternatively, a minimum of 6.5 on the Internation English Language Testing System will be accepted or Duolingo score of 105
- h. Optional Graduate Record Exam (GRE)

Program Requirements

To earn the Doctor of Philosophy in Translational Bioengineering, students are required to successfully complete the following:

- 47 credit hours of course work beyond their bachelor's degree (18 core credit hours, 9 specialty are credit hours, and 20 guided elective credit hours)
- 2. Participate in the Bioengineering Seminar Series (75% attendance rate and one presentation/year as a Doctoral candidate)
- 3. Pass the preliminary examination
- 4. Pass the Dissertation proposal
- 5. Successfully defend a dissertation
- Submit three or more peer-reviewed journal papers representing their original dissertation research

Code	Title	Hours
Required Core Co	ourses	
BE 601	Bioengineering Seminar	1
BE 601	Bioengineering Seminar	1
BE 601	Bioengineering Seminar	1
BE 603	Bioengineering Research Ethics	2
BE 621	Bioinstrumentation	4
BE 654	Advanced Physiology for Engineers	3
BE 695	Bioengineering Research Design & Methods	3
ME 565	Advanced Engineering Mathematics I	3
Minimum Total Hours		18

Students must choose 9 credit hours from one of the following focus areas:

- · Molecular & Tissue Engineering (MTE)
- · Bioimaging & Biocomputational Modeling (BBM)
- · Bioelectrical & Biomedical Devicies (BBD)
- · Biomechanics & Rehabilitation (BR)

Code Focus Area: Mole	Title ecular & Tissue Engineering (MTE)	Hours
Choose 9 hours f	from the courses below:	9
BE 553	Nanoscale Bioengineering: Application and Methodology of Nanobiomaterials in Bioengineering	
BE 552	Introduction to Tissue Engineering	
BE 605	Tissue and Molecular Biology Techniques Laboratory	
BE 650	Advanced Biomaterials	
BE 670	Cellular Mechanobiology in Cancer	
BIOC 611	Techniques in Biomolecular Interactions	
BIOC 668	Molecular Biology	
Minimum Total F	lours	9

Code	Title	Hours
Focus Area: Bio	imaging and Biocomputational Modeling (BBM)	

Choose 9 hours f	rom the courses below:	9
BE 542	Medical Image Computing	
BE 540	Machine Learning in Medicine	
BE 604	Introduction to Artificial Intelligence in Bioengineering	
BE 685	Modeling of Biological Phenomena	
BE 530	Machine Learning in Python	
BE 543	Computer Tools for Medical Image Analysis	
BE 544	Artificial Intelligence Techniques in Digital Pathology	
BE 640	Computational Methods for Medical Image Analysis	
BE 645	Artificial Intelligence and Radiomics	
CSE 622	Simulation and Modeling of Discrete Systems	
CSE 627	Digital Image Processing	

(Code	Title	Hours	
F	Focus Area: Bioelectrical & Biomedical Devices (BBD)			
(Choose 9 hours	from the courses below:	9	
	BE 524	LabVIEW for Bioengineers		
	BE 581	Advanced Computer-Aided Design and		

Minimum Total Hours

Choose 9 hours from the cours		rs from the courses below:	ç
	BE 524	LabVIEW for Bioengineers	
	BE 581	Advanced Computer-Aided Design and Manufacturing for Bioengineers	
	BE 522	Biomedical Acoustics	
	BE 683	Artificial Organs	
	ECE 543	Fundamentals of Microfabrication and MEMS	
	BE 611	Cardiovascular Dynamics	

BE 650	Advanced Biomaterials		
Minimum Total Hours		9	
Code	Title	Hours	
Focus Area: Biom	echanics & Rehabilitation (BR)		
Choose 9 hours for	rom the courses below:	9	
ME 640	Optimum Design Methods		
BE 630	Biomechanical Computer Modeling and Simulation of Human Movement	ion	
BE 611	Cardiovascular Dynamics		
BE 639	Injury Biomechanics		
BE 658	Rehabilitation Engineering and Assistive Technology		
ME 651	Kinematics and Kinetics of Human Movement		
ME 650	Biofluid Mechanics		
Minimum Total H	Minimum Total Hours 9		

Specialization Area Guided Electives

Courses in Specialization Area must be unique from those taken to fulfill the Focus Area requirement, and must follow a track listed below. Students must work with their advisor to establish a Plan of Study for Specialization Courses. All Specialization courses must be approved by the student's advisor prior to registration.

Traditional Bioengineering (T)

18 credit hours from those listed below with a minimum of six (6) credit hours in engineering courses and Teaching Practicum, BE 668 (two (2) credit hours).

Clinical Translational Bioengineering (C)

12 credit hours from list below designated as ASNB, BIOC, MBIO, OBIO, or PHZB; remaining six (6) credit hours in engineering courses and Clinical Practicum, BE 692 (two (2) credit hours).

Entrepreneurship of Bioengineering Technologies (E)

12 credit hours from list below designated as ENTR; remaining six (6) credit hours in engineering courses and Teaching Practicum, BE 668 (two (2) credit hours).

Code	Title	Hours
BE 668	Translational Bioengineering teaching Practicum	n 2
or BE 692	Bioengineering Clinical Rotation	
BE 522	Biomedical Acoustics	
BE 524	LabVIEW for Bioengineers	
BE 530	Machine Learning in Python	
BE 540	Machine Learning in Medicine	
BE 542	Medical Image Computing	
BE 543	Computer Tools for Medical Image Analysis	
BE 544	Artificial Intelligence Techniques in Digital Pathology	
BE 552	Introduction to Tissue Engineering	
BE 553	Nanoscale Bioengineering: Application and Methodology of Nanobiomaterials in Bioengineering	
BE 581	Advanced Computer-Aided Design and Manufacturing for Bioengineers	

UNIVERSITY OF LOUISVILLE.

BE 604	Introduction to Artificial Intelligence in Bioengineering
BE 605	Tissue and Molecular Biology Techniques Laboratory
BE 611	Cardiovascular Dynamics
BE 630	Biomechanical Computer Modeling and Simulation of Human Movement
BE 639	Injury Biomechanics
BE 640	Computational Methods for Medical Image Analysis
BE 645	Artificial Intelligence and Radiomics
BE 650	Advanced Biomaterials
BE 658	Rehabilitation Engineering and Assistive Technology
BE 670	Cellular Mechanobiology in Cancer
BE 683	Artificial Organs
BE 685	Modeling of Biological Phenomena
ASNB 602	Fundamentals of Neuroscience
ASNB 614	Molecular Neuroscience
ASNB 617	Seminar on Developmental Neurobiology
BIOC 645	Advanced Biochemistry I
BIOC 675	Cancer Biology
CSE 532	Python and Data Analytics
CSE 590	Special Topics in Computer Science and Engineering
CSE 619	Design and Analysis of Computer Algorithms
CSE 628	Computer Graphics
CSE 632	Data Mining
CSE 633	Computer Vision
CSE 635	Data Mining with Linear Models
CSE 660	Introduction to Bioinformatics
CSE 694	Special Topics in Computer Science and Engineering
ECE 520	Digital Signal Processing
ECE 521	Digital Signal Processing Laboratory
ECE 523	Introduction to Biometrics
ECE 544	Microfabrications/MEMS Laboratory
ECE 564	Fundamentals of Autonomous Robots
ECE 565	Fundamentals of Autonomous Robots Lab
ECE 614	Deep Learning
ECE 661	Sampled-Data Control Systems
ECE 662	Introduction to Optimum Control
ENTR 702	Research Design I
ENTR 741	Research Design II
ENTR 724	Strategic Entrepreneurship
ENTR 745	Entrepreneurship Theory I
ENTR 746	Entrepreneurship Theory II
ENTR 747	Corporate Entrepreneurship and Innovation
ISE 563	Experimental Design in Engineering
ME 566	Advanced Engineering Mathematics II
ME 644	Mechatronics
ME 671	Advanced Fluid Mechanics
ME 675	Advanced Topics in Mechanical Engineering

MBIO 601	Molecular Microbiology
MBIO 602	Immunology
MBIO 610	Methods and Analysis in the Biomedical Sciences
MBIO 618	Topics in Advanced Microbiology
OBIO 611	Craniofacial Osteology
OBIO 612	Craniomaxillofacial Diagnostic Imaging
OBIO 617	Advanced Oral Pathology
PHMS 641	Data Mining I
PHMS 642	Data Mining II
PHST 620	Introduction to Statistical Computing
PHST 661	Probability
PHST 680	Biostatistical Methods I
PHST 682	Multivariate Statistical Analysis
PHST 684	Categorical Data Analysis
PHST 710	Advanced Statistical Computing I
PHZB 611	Advanced Human Cardiovascular Physiology