MECHANICAL ENGINEERING (ME)

Subject-area course lists indicate courses currently active for offering at the University of Louisville. Not all courses are scheduled in any given academic term. For class offerings in a specific semester, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm).

500-level courses generally are included in both the undergraduate- and graduate-level course listings; however, specific course/section offerings may vary between semesters. Students are responsible for ensuring that they enroll in courses that are applicable to their particular academic programs.

Course Fees

Some courses may carry fees beyond the standard tuition costs to cover additional support or materials. Program-, subject- and course-specific fee information can be found on the Office of the Bursar website (http://louisville.edu/bursar/tuitionfee).

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Term Typically Offered</th>
<th>Prerequisite(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 251. Thermodynamics I</td>
<td>3</td>
<td>Fall, Spring, Summer</td>
<td>ENGR 102 and PHYS 298.</td>
<td>This course covers: fundamental thermodynamic concepts involving heat and work; obtaining properties for typical working fluids, real and ideal gases; first and second laws of thermodynamics; entropy and reversible and irreversible processes; and basic cycles. For class offerings for a specific term, refer to the Schedule of Classes.</td>
</tr>
<tr>
<td>ME 280. Structured Programming for Mechanical Engineering</td>
<td>2</td>
<td>Fall, Spring</td>
<td>CEECS 121.</td>
<td>Software development using structured computer programming. Design and implementation of programs with application to mechanical engineering problems such as numerical solution methods and kinematics. Uses a suitable programming language such as MATLAB. For class offerings for a specific term, refer to the Schedule of Classes.</td>
</tr>
<tr>
<td>ME 288. Mechanical Engineering Cooperative Education Seminar</td>
<td>0</td>
<td>Fall, Spring, Summer</td>
<td>CEE 205.</td>
<td>Discussion of the policies and procedures for cooperative education and instruction in self-directed job search techniques, including interviewing skills, resume preparation, and guidelines for the co-op report. This is a prerequisite for each cooperative education term.</td>
</tr>
<tr>
<td>ME 298. Mechanical Engineering Cooperative Education I</td>
<td>1</td>
<td>Fall, Spring, Summer</td>
<td>ME 288.</td>
<td>Full-time technical work experience related to the student’s academic program. Course Attribute(s): CBL - This course includes Community-Based Learning (CBL). Students will engage in a community experience or project with an external partner in order to enhance understanding and application of academic content. For class offerings for a specific term, refer to the Schedule of Classes.</td>
</tr>
<tr>
<td>ME 302. Fluid Mechanics Laboratory</td>
<td>1</td>
<td>Fall, Spring</td>
<td>ME 311.</td>
<td>Experimental measurements of static and dynamic fluid properties. Concepts of laboratory testing. Introduction to technical report writing. For class offerings for a specific term, refer to the Schedule of Classes.</td>
</tr>
</tbody>
</table>
ME 323. Mechanics of Materials 3 Units
Term Typically Offered: Fall, Summer
Prerequisite(s): CEE 205 and ENGR 201.

ME 324. Mechanics of Materials Laboratory 1 Unit
Term Typically Offered: Fall, Summer
Corequisite(s): ME 323.
Description: Experimental measurements of mechanical material properties and experimental verification of solid mechanics theory. Concepts of laboratory testing. Introduction to technical report writing. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 380. Computer Aided Design 2 Units
Term Typically Offered: Fall, Spring
Prerequisite(s): ENGR 151 and ME 323.
Description: An introduction to the engineering design process emphasizing the use of modern computer-based analysis, design and presentation tools for mechanical engineering applications. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 381. Introduction to Manufacturing 2 Units
Term Typically Offered: Fall, Spring
Prerequisite(s): CHE 253 and ME 251.
Corequisite(s): ME 380.
Description: Introduction to manufacturing processes with an emphasis on considerations for mechanical engineering design. Topics covered include casting, machining, forming, assembly, and modern methods for both polymer and metal materials. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 389. Mechanical Engineering Cooperative Education II 1 Unit
Grading Basis: Pass/Fail
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ME 289.
Description: Full-time technical work experience related to the student’s academic program.
Course Attribute(s): CBL - This course includes Community-Based Learning (CBL). Students will engage in a community experience or project with an external partner in order to enhance understanding and application of academic content.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 401. Fluid Mechanics II 3 Units
Term Typically Offered: Fall, Spring
Prerequisite(s): ME 311 and ENGR 205.
Description: Differential analysis of fluid flow, viscous flow in pipes, flow over immersed bodies, compressible flow and turbomachinery. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 414. Mechanical Measurements 3 Units
Term Typically Offered: Fall, Spring
Prerequisite(s): ENGR 205, ME 312, and ME 324.
Description: General consideration of signals and utilization of instruments to measure physical properties of systems. Review and introduction of useful mathematical concepts such as statistical data analysis. Introduction to digital data acquisition and signal processing. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 415. Senior Mechanical Engineering Laboratory 1 Unit
Term Typically Offered: Fall, Spring
Corequisite(s): ME 414.
Description: Experiments in heat transfer, mechanics, acoustics, pumps, electrical circuits, sound dynamics, and HVAC systems. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 422. Machine Design I 3 Units
Term Typically Offered: Fall, Spring
Prerequisite(s): ME 323 and CHE 253.
Description: Fundamental concepts related to the design of mechanical components and machines. The engineering design process. Design for strength and reliability. Open-ended design projects are assigned. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 432. Intermediate Mechanics of Materials 3 Units
Prerequisite(s): ME 323.
Description: Principle of virtual work. Principle of minimum potential energy. Matrix formulation of static and dynamic structural mechanics problems with a strong emphasis on computer applications. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 435. System Dynamics 3 Units
Term Typically Offered: Spring, Summer
Prerequisite(s): ECE 252, ENGR 205 and ME 311.
Description: Modeling of mechanical, fluid, electrical, and mixed systems. Determination of time and frequency domain response of such systems to transient and periodic inputs. Specific applications. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 440. Heat Transfer 3 Units
Term Typically Offered: Fall, Spring
Prerequisite(s): ME 401.
Description: A study of the fundamental laws and applications of heat transfer by conduction, convection, and radiation. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)
ME 442. Machine Design II  
**Term Typically Offered:** Fall, Spring  
**Prerequisite(s):** ME 422.  
**Description:** Design and application of machine elements such as springs, rolling element bearings, gearing, and journal bearings. Open-ended design projects are assigned.  

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 489. Mechanical Engineering Cooperative Education III  
**Term Typically Offered:** Fall, Spring, Summer  
**Prerequisite(s):** ME 389.  
**Description:** Full-time technical work experience related to the student’s academic program.  

Course Attribute(s): CBL - This course includes Community-Based Learning (CBL). Students will engage in a community experience or project with an external partner in order to enhance understanding and application of academic content.  

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 497. Mechanical Engineering Capstone Design Project - CUE  
**Term Typically Offered:** Fall, Spring  
**Prerequisite(s):** ME 442.  
**Description:** Team-oriented design of a mechanism, system or process satisfying a set of open-ended requirements. Written reports and oral presentations are required.  

Course Attribute(s): CUE - This course fulfills the Culminating Undergraduate Experience (CUE) requirement for certain degree programs. CUE courses are advanced-level courses intended for majors with at least 90 earned credits/senior-level status. CBL - This course includes Community-Based Learning (CBL). Students will engage in a community experience or project with an external partner in order to enhance understanding and application of academic content.  

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 510. Thermal Design of Internal Combustion Engines  
**Term Typically Offered:** Fall, Spring, Summer  
**Prerequisite(s):** ME 310.  
**Description:** Thermodynamics and fluid mechanics of internal combustion engine design. Combustion stoichiometry, thermochemistry, and properties of working fluids. Ideal and real engine cycles. Fluid flow processes, combustion processes, pollutant formation and control. Engine operating characteristics.  

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 512. Finite Element Methods for Mechanical Design I  
**Term Typically Offered:** Occasionally Offered  
**Prerequisite(s):** ME 422.  
**Description:** Matrix analysis of static and dynamic structural systems and steady-state heat transfer. Computer aided design of trusses, frames, plane stress structures, as well as one- and two-dimensional thermal systems including conduction and convection.  

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 513. Energy Conversion  
**Term Typically Offered:** Fall, Spring, Summer  
**Prerequisite(s):** ME 310.  
**Description:** A study of nuclear and fossil-fueled steam generators, plus internal combustion prime movers and alternate energy sources. A computerized design project will be required.  

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 521. Mechanical Vibrations  
**Term Typically Offered:** Fall, Spring, Summer  
**Prerequisite(s):** ME 422.  

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 523. Intermediate Dynamics  
**Term Typically Offered:** Fall, Spring, Summer  
**Prerequisite(s):** ME 206.  
**Description:** Extension of the concepts in introductory dynamics (ME 206) to three dimensional motion. This includes the kinematics of multiple, rotating reference frames, and Newtonian vector mechanics for particles and rigid bodies (Euler’s equations). Lagrangian analytical methods. Stability of motion.  

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 526. Vehicle Dynamics and Handling  
**Term Typically Offered:** Fall, Spring, Summer  
**Prerequisite(s):** ME 380.  
**Description:** Design of passenger and commercial vehicles for optimal dynamic performance with a focus on architecture layout, characterization of critical subsystems, and CAE-based kinematic and kinetic modeling.  

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 530. Mechanical Design of Consumer Appliances  
**Term Typically Offered:** Fall, Spring, Summer  
**Description:** Application of classical, computational, and experimental methods and analyses to the design of mechanical systems characteristic of consumer appliances. Topics include component analysis and design, failure mechanisms, and organization with respect to life, reliability, performance, and cost.  

For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)
ME 531. Consumer Appliance Energy Systems  
Term Typically Offered: Fall, Spring, Summer  
Description: Analysis and design of energy systems in home appliances. Topics include thermal-fluid process fundamentals, energy transport, storage, use, and conversion, energy system components and materials, and the affect of extreme environments on components and finishes. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 532. Experimental Stress Analysis  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ME 323, ME 414 and ME 415 or graduate standing in Mechanical Engineering.  
Description: Fundamentals of experimental stress analysis. Brittle coating methods, photoelastic coating and electrical strain gage techniques, strain measurements under static and dynamic loading. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 533. Control System Design  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ME 435.  
Description: Basic concepts and principles of feedback control systems. Formulation of linear control problems by classical methods. Analysis and synthesis techniques as used in the design of automatic, dynamic control systems. Study of transient and steady state response, use of time and frequency domain concepts. System performance specifications. Design applications. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 534. Experimental Vibrations  
Term Typically Offered: Summer Odd Years  
Prerequisite(s): ME 435.  
Description: Experimental techniques for identifying the modal parameters of mechanical and structural systems. Review of multiple degree-of-freedom vibration modeling and analysis: Measurement of frequency response functions. Excitation techniques, instrumentation, Fourier analysis and signal processing. Acoustical modal analysis. Experiments on real mechanical and structural systems. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 535. Gas Turbines  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ME 310 and ME 401.  
Description: Theory and design of various types of gas turbine engines used for power and propulsion. Thermodynamic cycle analysis; design basics of turbomachinery, nozzles, diffusers and combustion chambers; engine performance analysis. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 536. Advanced Engineering Mathematics I  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ENGR 201 or ENGR 205 or equivalent.  
Description: Formulation and solution of mathematical models for mechanical engineering problems leading to ordinary and partial differential equations. Transform solution methods and linear algebra concepts, including real and complex-domain eigenvalue problem solutions. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 537. Advanced Engineering Mathematics II  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ENGR 202 or ENGR 206 or equivalent.  
Description: Formulation and solution of mathematical models for mechanical engineering problems leading to ordinary and partial differential equations. Transform solution methods and linear algebra concepts, including real and complex-domain eigenvalue problem solutions. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 538. Advanced Engineering Mathematics III  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ENGR 203 or ENGR 207 or equivalent.  
Description: Formulation and solution of mathematical models for mechanical engineering problems leading to ordinary and partial differential equations. Transform solution methods and linear algebra concepts, including real and complex-domain eigenvalue problem solutions. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 539. Advanced Engineering Mathematics IV  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ENGR 204 or ENGR 208 or equivalent.  
Description: Formulation and solution of mathematical models for mechanical engineering problems leading to ordinary and partial differential equations. Transform solution methods and linear algebra concepts, including real and complex-domain eigenvalue problem solutions. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 540. Advanced Engineering Mathematics V  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ENGR 205 or ENGR 209 or equivalent.  
Description: Formulation and solution of mathematical models for mechanical engineering problems leading to ordinary and partial differential equations. Transform solution methods and linear algebra concepts, including real and complex-domain eigenvalue problem solutions. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 541. Advanced Engineering Mathematics VI  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ENGR 206 or ENGR 210 or equivalent.  
Description: Formulation and solution of mathematical models for mechanical engineering problems leading to ordinary and partial differential equations. Transform solution methods and linear algebra concepts, including real and complex-domain eigenvalue problem solutions. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 542. Advanced Engineering Mathematics VII  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ENGR 207 or ENGR 211 or equivalent.  
Description: Formulation and solution of mathematical models for mechanical engineering problems leading to ordinary and partial differential equations. Transform solution methods and linear algebra concepts, including real and complex-domain eigenvalue problem solutions. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 543. Advanced Engineering Mathematics VIII  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ENGR 208 or ENGR 212 or equivalent.  
Description: Formulation and solution of mathematical models for mechanical engineering problems leading to ordinary and partial differential equations. Transform solution methods and linear algebra concepts, including real and complex-domain eigenvalue problem solutions. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 544. Design of Fluid Power Systems  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ME 380 and ME 401.  
Description: Design methodology of hydraulic circuits and fluid power components. Study of rotary/linear actuators, hydrostatic transmissions, temperature control, comutation control, pneumatics, valves, and control components. Applied design projects and laboratory modules are required. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 552. Linear Control System Analysis and Synthesis  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ME 435.  
Description: Linear control system analysis and synthesis, including state space methods, transfer function methods, and root locus methods. Design applications. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 553. Advanced Control System Design  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ME 535.  
Description: Advanced concepts and principles of feedback control systems. Formulation of linear control problems by classical methods. Analysis and synthesis techniques as used in the design of automatic, dynamic control systems. Study of transient and steady state response, use of time and frequency domain concepts. System performance specifications. Design applications. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 554. Process Physics & Material Science in Advanced Manufacturing  
Term Typically Offered: Spring Only  
Prerequisite(s): ME 323 and ME 381.  
Description: Materials processing lies at the core of advanced manufacturing. It is through understanding and innovations in materials processing, true progress in manufacturing development can be reached. Topics include mechanical, thermal, electrochemical, acoustic, optical energy-based material processing physics, physical metallurgy, phase transformation, solidification, heat and mass transfer, dislocation mechanics in the context of manufacturing. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 555. Introduction to Micro and Nanotechnology  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): CHE 253 or equivalent; Senior or Graduate standing in an engineering program.  
Description: Design, fabrication and application of micro- and nano-electro-mechanical systems (MEMS/NEMS). Scaling laws governing micro-and nanoscale physics. Use of MEMS/NEMS devices in electronics, as sensors, and for medical applications. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 556. Composite Materials  
Term Typically Offered: Fall, Spring, Summer  
Prerequisite(s): ME 422.  
Description: Overview of composite materials, stress/strain analysis of a polymer matrix fiber-reinforced composite ply, classical lamination theory, failure criteria, design approaches, manufacturing methods, and applications for structural polymeric composites. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)
ME 566. Advanced Engineering Mathematics II  3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ME 565 or equivalent.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 570. Sustainable Energy Systems  3 Units
Term Typically Offered: Fall Only
Prerequisite(s): ME 310 and ME 311.
Description: Analysis and design of sustainable energy systems, and exploration of concepts such as carbon capture storage for making fossil energy systems more environmentally acceptable.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 572. Energy Storage Systems  3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ME 440.
Description: Study of the principles and analysis of energy systems. Introduction to energy storage systems and their applications; thermal and mechanical energy storage, storage of organic fuels, hydrogen, and electrochemical energy.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 575. Special Topics in Mechanical Engineering  1-4 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): Faculty consent.
Description: A special topics course in mechanical engineering topics not covered by regularly scheduled courses.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 580. Air Pollution Control  3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): CHEM 202, ME 310 or equivalent.
Description: Origin and fate of air pollutants, combustion and pollutant formation processes, control of emissions of gaseous and particulate pollutants and design of various pollution control devices.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 585. Design and Energy Analysis of Consumer Appliances  4.5 Units
Description: Application of classical, computational, and experimental methods and analysis to the design of mechanical and energy systems. Topics include material impacts on design, structural component design, and design and analysis of thermal fluid, and acoustic systems.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)