ME 206. Mechanics II: Dynamics 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ENGR 102 and CEE 205.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 251. Thermodynamics I 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ENGR 102 and PHYS 298.
Description: This course covers: fundamental thermodynamic concepts involving heat and work; obtaining properties for typical working fluids, real and ideal gases; first and second laws of thermodynamics; entropy and reversible and irreversible processes; and basic cycles. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 280. Structured Programming for Mechanical Engineering 2 Units
Term Typically Offered: Fall, Spring
Prerequisite(s): CECS 121.
Description: Software development using structured computer programming. Design and implementation of programs with application to mechanical engineering problems such as numerical solution methods and kinematics. Uses a suitable programming language such as MATLAB.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 288. Mechanical Engineering Cooperative Education Seminar 0 Units
Grading Basis: Pass/Fail
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): CEE 205, CHEM 201, ENGL 101, ENGR 102, ENGR 110, student must be in Good Standing with GPA of 2.25 or higher.
Description: Discussion of the policies and procedures for cooperative education and instruction in self-directed job search techniques, including interviewing skills, resume preparation, and guidelines for the co-op report. This is a prerequisite for each cooperative education term. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 289. Mechanical Engineering Cooperative Education I 1 Unit
Grading Basis: Pass/Fail
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ME 288.
Fee: An additional $300.00 is charged for this course.
Description: Full-time technical work experience related to the student’s academic program.
Course Attribute(s): CBL - This course includes Community-Based Learning (CBL). Students will engage in a community experience or project with an external partner in order to enhance understanding and application of academic content.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 310. Thermodynamics II 3 Units
Term Typically Offered: Spring, Summer
Prerequisite(s): ME 251.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 311. Fluid Mechanics I 3 Units
Term Typically Offered: Fall, Spring
Prerequisite(s): ME 206 and ME 251.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 312. Fluid Mechanics Laboratory 1 Unit
Term Typically Offered: Fall, Spring
Corequisite(s): ME 311.
Fee: An additional $20.00 is charged for this course.
Description: Experimental measurements of static and dynamic fluid properties. Concepts of laboratory testing. Introduction to technical report writing.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Term Typically Offered</th>
<th>Prerequisite(s)</th>
<th>Description</th>
<th>Fee:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 323</td>
<td>Mechanics of Materials</td>
<td>3</td>
<td>Fall, Summer</td>
<td>ENGR 205 and ENGR 201</td>
<td>Description: Analysis of stress and strain. Hooke’s law. Deflections. Statically indeterminate problems. Buckling of columns. Energy methods. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)</td>
<td></td>
</tr>
<tr>
<td>ME 324</td>
<td>Mechanics of Materials Laboratory</td>
<td>1</td>
<td>Fall, Summer</td>
<td>ME 323</td>
<td>Description: Experimental measurements of mechanical material properties and experimental verification of solid mechanics theory. Concepts of laboratory testing. Introduction to technical report writing. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)</td>
<td></td>
</tr>
<tr>
<td>ME 380</td>
<td>Computer Aided Design</td>
<td>2</td>
<td>Fall, Spring</td>
<td>ENGR 151 and ME 323</td>
<td>Description: An introduction to the engineering design process emphasizing the use of modern computer-based analysis, design and presentation tools for mechanical engineering applications. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)</td>
<td></td>
</tr>
<tr>
<td>ME 381</td>
<td>Introduction to Manufacturing</td>
<td>2</td>
<td>Fall, Spring</td>
<td>ME 380</td>
<td>Description: Introduction to manufacturing processes with an emphasis on considerations for mechanical engineering design. Topics covered include casting, machining, forming, assembly, and modern methods for both polymer and metal materials. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)</td>
<td></td>
</tr>
<tr>
<td>ME 389</td>
<td>Mechanical Engineering Cooperative Education II</td>
<td>1</td>
<td>Fall, Spring, Summer</td>
<td>ME 289</td>
<td>Description: Full-time technical work experience related to the student’s academic program. Course Attribute(s): CBL - This course includes Community-Based Learning (CBL). Students will engage in a community experience or project with an external partner in order to enhance understanding and application of academic content. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)</td>
<td></td>
</tr>
<tr>
<td>ME 401</td>
<td>Fluid Mechanics II</td>
<td>3</td>
<td>Fall, Spring</td>
<td>ME 311 and ENGR 205</td>
<td>Description: Differential analysis of fluid flow, viscous flow in pipes, flow over immersed bodies, compressible flow and turbomachinery. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)</td>
<td></td>
</tr>
<tr>
<td>ME 414</td>
<td>Mechanical Measurements</td>
<td>3</td>
<td>Fall, Spring</td>
<td>ENGR 205, ME 312, and ME 324</td>
<td>Description: General consideration of the behavior of instruments used to measure physical properties of mechanical systems. Introduction to filters and amplifiers for signal modification, digital data acquisition, and digital signal processing. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)</td>
<td></td>
</tr>
<tr>
<td>ME 415</td>
<td>Senior Mechanical Engineering Laboratory</td>
<td>1</td>
<td>Fall, Spring</td>
<td>ME 414</td>
<td>Description: Experiments in temperature measurement, system dynamics, stress analysis using strain gages, filters and amplifiers, and digital data acquisition. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)</td>
<td></td>
</tr>
<tr>
<td>ME 422</td>
<td>Machine Design I</td>
<td>3</td>
<td>Fall, Spring</td>
<td>ME 323 and CHE 253</td>
<td>Description: Fundamental concepts related to the design of mechanical components and machines. The engineering design process. Design for strength and reliability. Open-ended design projects are assigned. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)</td>
<td></td>
</tr>
<tr>
<td>ME 432</td>
<td>Intermediate Mechanics of Materials</td>
<td>3</td>
<td>Fall, Summer</td>
<td>ME 323</td>
<td>Description: Principle of virtual work. Principle of minimum potential energy. Matrix formulation of static and dynamic structural mechanics problems with a strong emphasis on computer applications. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)</td>
<td></td>
</tr>
<tr>
<td>ME 435</td>
<td>System Dynamics</td>
<td>3</td>
<td>Spring, Summer</td>
<td>ECE 252, ENGR 205 and ME 311</td>
<td>Description: Modeling of mechanical, fluid, electrical, and mixed systems. Determination of time and frequency domain response of such systems to transient and periodic inputs. Specific applications. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Term Typically Offered</td>
<td>Prerequisite(s)</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>ME 440</td>
<td>Heat Transfer</td>
<td>3 Units</td>
<td>Fall, Spring</td>
<td>ME 311</td>
<td>A study of the fundamental laws and applications of heat transfer by conduction, convection, and radiation.</td>
<td></td>
</tr>
<tr>
<td>ME 442</td>
<td>Machine Design II</td>
<td>3 Units</td>
<td>Fall, Spring</td>
<td>ME 422</td>
<td>Design and application of machine elements such as springs, rolling element bearings, gearing, and journal bearings. Open-ended design projects are assigned.</td>
<td></td>
</tr>
<tr>
<td>ME 489</td>
<td>Mechanical Engineering Cooperative Education III</td>
<td>1 Unit</td>
<td>Fall, Spring, Summer</td>
<td>ME 389</td>
<td>Full-time technical work experience related to the student’s academic program.</td>
<td></td>
</tr>
<tr>
<td>ME 497</td>
<td>Mechanical Engineering Capstone Design Project - CUE</td>
<td>3 Units</td>
<td>Fall, Spring</td>
<td>ME 442</td>
<td>Team-oriented design of a mechanism, system or process satisfying a set of open-ended requirements. Written reports and oral presentations are required.</td>
<td></td>
</tr>
<tr>
<td>ME 510</td>
<td>Thermal Design of Internal Combustion Engines</td>
<td>3 Units</td>
<td>Fall, Spring, Summer</td>
<td>ME 310</td>
<td>Thermodynamics and fluid mechanics of internal combustion engine design. Combustion stoichiometry, thermochemistry, and properties of working fluids. Ideal and real engine cycles. Fluid flow processes, combustion processes, pollutant formation and control. Engine operating characteristics.</td>
<td></td>
</tr>
<tr>
<td>ME 512</td>
<td>Finite Element Methods for Mechanical Design I</td>
<td>3 Units</td>
<td>Occasionally Offered</td>
<td>ME 422</td>
<td>Matrix analysis of static and dynamic structural systems and steady-state heat transfer. Computer aided design of trusses, frames, plane stress structures, as well as one- and two-dimensional thermal systems including conduction and convection. For class offerings for a specific term, refer to the Schedule of Classes.</td>
<td></td>
</tr>
<tr>
<td>ME 513</td>
<td>Energy Conversion</td>
<td>3 Units</td>
<td>Fall, Spring, Summer</td>
<td>ME 310</td>
<td>A study of nuclear and fossil-fueled steam generators, plus internal combustion prime movers and alternate energy sources. A computerized design project will be required. For class offerings for a specific term, refer to the Schedule of Classes.</td>
<td></td>
</tr>
<tr>
<td>ME 521</td>
<td>Mechanical Vibrations</td>
<td>3 Units</td>
<td>Fall, Spring, Summer</td>
<td>ME 422</td>
<td>The theory of vibrating mechanical systems. Modeling of lumped parameter and distributed parameter systems. Free and forced vibration. Damping. Periodic and transient motion. Concept of normal modes. Multiple degree-of-freedom systems. Design applications. For class offerings for a specific term, refer to the Schedule of Classes.</td>
<td></td>
</tr>
<tr>
<td>ME 523</td>
<td>Intermediate Dynamics</td>
<td>3 Units</td>
<td>Fall, Spring, Summer</td>
<td>ME 206</td>
<td>Extension of the concepts in introductory dynamics (ME 206) to three dimensional motion. This includes the kinematics of multiple, rotating reference frames, and Newtonian vector mechanics for particles and rigid bodies (Euler’s equations). Lagrangian analytical methods. Stability of motion. For class offerings for a specific term, refer to the Schedule of Classes.</td>
<td></td>
</tr>
<tr>
<td>ME 526</td>
<td>Vehicle Dynamics and Handling</td>
<td>3 Units</td>
<td>Fall, Spring, Summer</td>
<td>ME 380</td>
<td>Design of passenger and commercial vehicles for optimal dynamic performance with a focus on architecture layout, characterization of critical subsystems, and CAE-based kinematic and kinetic modeling. For class offerings for a specific term, refer to the Schedule of Classes.</td>
<td></td>
</tr>
</tbody>
</table>
ME 532. Experimental Stress Analysis 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ME 323, ME 414 and ME 415 or graduate standing in Mechanical Engineering.
Fee: An additional $30.00 is charged for this course.
Description: Fundamentals of experimental stress analysis. Brittle coating methods, photoelastic coating and electrical strain gage techniques, strain measurements under static and dynamic loading. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 534. Experimental Vibrations 3 Units
Term Typically Offered: Summer Odd Years
Prerequisite(s): ME 435.
Description: Experimental techniques for identifying the modal parameters of mechanical and structural systems. Review of multiple degree-of-freedom vibration modeling and analysis. Measurement of frequency response functions. Excitation techniques, instrumentation, Fourier analysis and signal processing. Acoustical modal analysis. Experiments on real mechanical and structural systems. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 535. Control System Design 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ME 435.
Description: Basic concepts and principles of feedback control systems. Formulation of linear control problems by classical methods. Analysis and synthesis techniques as used in the design of automatic, dynamic control systems. Study of transient and steady state response, use of time and frequency domain concepts. System performance specifications. Design applications. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 536. Applied Stress Analysis 3 Units
Description: The course is designed to review basic concepts in structural mechanics, formulate analytical solutions to elastic problems, and understand finite element analysis procedures for mechanical engineering problems. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 540. Microfluidics 3 Units
Term Typically Offered: Fall Only
Description: Introduction to the basic theory and practical applications of microfluidics. Topics include fluid mechanics at small scales, fabrication of microfluidic devices, methods of inducing and controlling flow, and techniques to measure fluid properties. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 542. Gas Turbines 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ME 310 and ME 401.
Description: Theory and design of various types of gas turbine engines used for power and propulsion. Thermodynamic cycle analysis; design basics of turbomachinery, nozzles, diffusers and combustion chambers; engine performance analysis. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 544. Design of Fluid Power Systems 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ME 380 and ME 311.
Description: Design methodology of hydraulic circuits and fluid power components. Study of rotary/linear actuators, hydrostatic transmissions, temperature control, contamination control, pneumatics, valves, and control components. Applied design projects and laboratory modules are required. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 547. Design Methods 3 Units
Term Typically Offered: Fall Only
Prerequisite(s): ME 422.
Description: This course uses broad based engineering knowledge to meld equation driven principles with customer and business driven needs/requirements. The product development process is used to design a mechanical or electro-mechanical product. Topics include: concurrent engineering, project management, voice of customer, quality function deployment, concept generation, concept selection, concept embodiment, robust design methods, design failure mode and effects analysis, design validation plan & report design for X, and value/cost analysis. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 549. Geometric Dimensioning and Tolerancing 3 Units
Description: Introduction to the terms, rules, symbols, and concepts of GD&T as prescribed in the ASME Y14.5-2009 Standard, plus application of the GD&T. The class includes a comparison of GD&T to coordinate tolerancing: Rules #1 and #2; form and orientation controls; tolerance of position; runout and profile controls. It also introduces measuring using a coordinate measuring machine and PolyWorks For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 551. Materials for Additive Manufacturing 3 Units
Description: This course will explore polymeric and particulate materials in the context of processes and applications associated with additive manufacturing, popularly referred to as 3D printing. Metals, ceramics, polymers and composites can all be processed using additive manufacturing technologies. This course will guide students to undertake self-directed studies from popular, commercial and refereed research publications contributing to insights on materials-processing-design interactions in additive manufacturing. For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)
ME 553. Design-To-Manufacture Digital Tools 3 Units
Description: Successful product design involves correctly answering three inter-related questions: (1) What does the product look like? (2) What will the product be made out of? (3) How will the product be made? The three considerations based on material properties, component shapes, and processing methods offer many opportunities but impose several constraints that affect decision making in manufacturing. This online course will synthesize the learning from foundational engineering courses in materials, design and manufacturing and enable the student to undertake design challenges using the CES EduPack software to skillfully navigate the material-shape-process space.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 555. Introduction to Micro and Nanotechnology 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): CHE 253 or equivalent; Senior or Graduate standing in an engineering program.
Description: Design, fabrication and application of micro- and nano-electromechanical systems (MEMS/NEMS). Scaling laws governing micro-and nanoscale physics. Use of MEMS/NEMS devices in electronics, as sensors, and for medical applications.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 556. Micro/Nano Energy Systems 3 Units
Prerequisite(s): ME 310 or Graduate standing.
Description: Introduction to different micro- and nanoscale energy conversion technologies - their basic principle, design considerations, fabrication, and operation. Topics include mechanical energy harvesting mechanisms such as piezoelectric and electrostatic, thermal energy harvesting systems such as thermoelectric and pyroelectric, and solid-state cooling technologies such as electrocaloric and magnetocaloric.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 559. Process Physics & Material Science in Advanced Manufacturing 3 Units
Term Typically Offered: Spring Only
Prerequisite(s): ME 323 and ME 381.
Description: Materials processing lies at the core of advanced manufacturing. It is through understanding and innovations in materials processing, true progress in manufacturing development can be reached. Topics include mechanical, thermal, electrochemical, acoustic, optical energy-based material processing physics, physical metallurgy, phase transformation, solidification, heat and mass transfer, dislocation mechanics in the context of manufacturing.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 560. Composite Materials 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ME 422.
Description: Overview of composite materials, stress/strain analysis of a polymer matrix fiber-reinforced composite ply, classical lamination theory, failure criteria, design approaches, manufacturing methods, and applications for structural polymeric composites.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 557. Advanced Engineering Mathematics I 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ENGR 201 or ENGR 205 or equivalent.
Description: Formulation and solution of mathematical models for mechanical engineering problems leading to ordinary and partial differential equations. Transform solution methods and linear algebra concepts, including real and complex-domain eigenvalue problem solutions.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 558. Advanced Engineering Mathematics II 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ME 555 or equivalent.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 559. Introduction to Micro and Nanotechnology 3 Units
Term Typically Offered: Fall Only
Prerequisite(s): ME 310 and ME 311.
Description: Analysis and design of sustainable energy systems, and exploration of concepts such as carbon capture storage for making fossil energy systems more environmentally acceptable.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 560. Micro/Nano Energy Systems 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ME 440 or graduate standing in Mechanical Engineering.
Description: Study of the principles and analysis of energy systems. Introduction to energy storage systems and their applications; thermal and mechanical energy storage, storage of organic fuels, hydrogen, and electrochemical energy.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 562. Composite Materials 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ME 422.
Description: Overview of composite materials, stress/strain analysis of a polymer matrix fiber-reinforced composite ply, classical lamination theory, failure criteria, design approaches, manufacturing methods, and applications for structural polymeric composites.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)
ME 575. Special Topics in Mechanical Engineering 1-4 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): Faculty consent.
Description: A special topics course in mechanical engineering topics not covered by regularly scheduled courses.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 580. Air Pollution Control 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): CHEM 202, ME 310 or equivalent.
Description: Origin and fate of air pollutants, combustion and pollutant formation processes, control of emissions of gaseous and particulate pollutants and design of various pollution control devices.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 585. Design and Energy Analysis of Consumer Appliances 4.5 Units
Description: Application of classical, computational, and experimental methods and analysis to the design of mechanical and energy systems. Topics include material impacts on design, structural component design, and design and analysis of thermal fluid, and acoustic systems.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 588. Independent Study in Mechanical Engineering 1-4 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): Faculty consent.
Description: A theoretical or experimental investigation of a problem area related to mechanical engineering.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)

ME 595. Measurement, Reliability, and Thermal Design of Electromechanical Systems 4.5 Units
Prerequisite(s): ME 585.
Description: Application of classical, computational, and experimental methods and analyses to the design of electromechanical systems. Topics include reliability and failure analysis, measurement and control of electromechanical systems, and analysis and design optimization of thermal systems.
For class offerings for a specific term, refer to the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/setupSearchClassSchedule.cfm)