Public Health - Biostatistics (PHST)

PHST 500. Introduction to Biostatistics for Health Sciences I3 Units

Prerequisite(s): Enrolled as a student in the PH MPH, MSc or Certificate in Clinical Investigation Sciences program.

Description: This course is a graduate level introduction to descriptive and inferential statistical methods including confidence intervals and hypothesis tests for 1- and 2-samples, power and sample size calculation, one-way analysis of variance, and simple linear regression. Requisite background material on basic probability, distributions, and sampling is covered. A statistical software package will be used to execute the descriptive, graphical, and inferential statistical techniques on real data sets.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 501. Introduction to Biostatistics for Health Sciences II3 Units

Prerequisite(s): PHST 500 and enrolled in the PH MPH, MSc or Certificate in Clinical Investigation Sciences program.

Description: This course is a continued graduate level introduction to inferential statistical methods, covering multi-way analysis of variance, multiple regression, the chi-square analysis of frequencies and logistic regression, survival analysis, and nonparametric statistical methods. A statistical software package will be used to execute the descriptive, graphical, and inferential statistical techniques on real data sets.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 602. Biostatistics Seminar1 Unit

Prerequisite(s): Enrolled in the PhD or MS in Biostatistics, PH MPH, Math major in Graduate School.

Description: Weekly seminar series for MS and PhD Biostatistics students. Students will hear speakers present their current research in bioinformatics and biostatistics and report on the work.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 603. Biostatistics Public Health Practicum I1-2 Units

Prerequisite(s): Enrolled in MS in Biostatistics, PH MPH or Math major in Graduate School.

Description: Practical experience in biostatistical collaboration at the Master's level, in which a student works with one or more investigators in the health sciences. Students typically engage in the statistical analysis of investigator data sets and are required to generate and present a report to the collaborating investigators.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 604. Biostatistics 1-2 Units

Prerequisite(s): PHST 603; Enrolled as a student in the MS in Biostatistics, PH MPH, or Math major in Graduate School.

Description: Practical experience in biostatistical collaboration at the Master's level, in which a student works with one or more investigators in the health sciences. Students typically engage in the statistical analysis of investigator data sets and are required to generate and present a report to the collaborating investigators.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 620. Introduction to Statistical Computing3 Units

Prerequisite(s): Enrolled in MPH program and PHST 500.

Description: This course provides an introduction to SAS. It will give students an overview of the SAS system under MS Windows and provide fundamental grounding in the environment for accessing, structuring, formatting and manipulating data. Students will learn how to summarize and display data, and the inference between data steps and procedures to get information out of data.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 624. Clinical Trials I: Planning and Design2 Units

Prerequisite(s): Enrolled in the MS in Biostatistics or the MSc or Certificate in Clinical Investigation Sciences.

Description: Phases of Trials, Ethical Issues, Basic Design, Inclusion and Exclusion criteria, Randomization and Blinding, Sample Size, Monitoring Response Variables, and Issues in Data Analysis

For class offerings for a specific term, refer to the Schedule of Classes

PHST 625. Clinical Trials II2 Units

Prerequisite(s): PHST 624 and enrolled in the MS in Biostatistics or the MSc or Certificate in Clinical Investigation Sciences.

Description: Sample Size and Power Analysis, Survival Analysis, Sequential Design, Meta Analysis, Reporting and Interpreting of Results, Multicenter Trails. SPSS will be used.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 631. Data Collection for Clinical Research2 Units

Prerequisite(s): PHST 500 (or equivalent) completed or concurrent.

Description: Enrolled in MSc or Certificate in Clinical Investigation Sciences. Identification and selection or design and analysis of instruments for collecting data used in clinical research. Includes psychometric properties of data collected. REDCap and SPSS will be used extensively.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 640. Statistical Methods for Research Design in Health Sciences3 Units

Prerequisite(s): Enrolled MPH program and PHST 500.

Description: Statistical methods for clinical research and interpretation of the literature.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 645. Health Sciences Data Collection Instrumentation3 Units

Prerequisite(s): PHST 500.

Description: This course covers the identification and selection or design and analysis of instruments for collecting data used in health sciences research and evaluation. Psychometric/biometric properties of data collected using instruments are addressed extensively. Epi info 7 will be used to develop data collection instruments and SPSS will be used for data management and analysis. This will be taught as a hybrid course.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 650. Advanced Topics in Biostatistics1-3 Units

Prerequisite(s): Enrolled in MS in Biostatistics and permission from the instructor.

Description: A treatment of one or more topics in advanced biostatistics not usually covered in a regularly offered course.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 655. Basic Statistical Methods for Bioinformatics3 Units

Term Typically Offered: Fall Only

Prerequisite(s): PHST 681 and enrolled in graduate studies in the School of Public and Information Sciences.

Description: This course provides an introduction to some core topics in bioinformatics. Topics will include-pairwise and multiple sequence alignment algorithms; gene expression profiling using microarrays; introduction to next generation sequencing; analyzing RNA-Seq data and phylogenetics. Students are expected to be familiar with some elementary statistics and probability concepts.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 660. Mathematical Tools4 Units

Prerequisite(s): Enrolled in MS in Biostatistics and MATH 190 or equivalent.

Description: This course focuses on the basic techniques of differential and integral calculus, and matrix algebra. Topics include the chain rule, higher-order derivatives, partial derivatives, improper integrals, multiple integrals, sequences and series, vector and matrix arithmetic, and eigenvalues.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 661. Probability3 Units

Prerequisite(s): Enrolled in MS in Biostatistics or Math major in Graduate School.

Description: Introduction to probability theory. Topics include axioms of probability, conditional probability, discrete and continuous random variables, probability distributions and joint distributions, moments, moment generating functions, mathematical expectation, transformations of random variables, limit theorems (Law of Large Numbers and Central Limit Theory).

For class offerings for a specific term, refer to the Schedule of Classes

PHST 662. Mathematical Statistics3 Units

Prerequisite(s): PHST 661, enrolled in MS in Biostatistics, or Math major in Graduate School.

Description: A first course in statistical theory. Topics include limiting distributions, maximum likelihood estimation, least squares, sufficiency and completeness, confidence intervals, Bayesian estimation, Neyman-Pearson Lemma, uniformly most powerful tests, likelihood ratio tests and asymptotic distributions.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 666. Master's Thesis Research1-6 Units

Prerequisite(s): Enrolled in the MS in Biostatistics or Math major in Graduate School; accumulation of at least 18 hours of PHST credit hours.

Description: Mentored research; Thesis Preparation.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 671. Special Topics in Biostatistics1-3 Units

Prerequisite(s): Enrolled in the MS in Biostatistics or Math major in Graduate School.

Description: A treatment of one or more topics in advanced Biostatistics not usually covered in a regularly offered course. May be repeated under different subtitles.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 675. Independent Study in Biostatistics1-3 Units

Prerequisite(s): PHST 661 and enrolled in the MS in Biostatistics or Math major in Graduate School.

Description: Course allows students to pursue advanced study with faculty guidance on a topic related to biostatistics.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 680. Biostatistical Methods I3 Units

Prerequisite(s): PHST 501, enrolled in the MS Biostatistics, PH MPH, or Math major in Graduate School.

Description: A mathematically sophisticated presentation of statistical principles and methods. Topics include exploratory data analysis, graphical methods, point and interval estimation, hypothesis testing, and categorical data analysis Matrix algebra is required. Data sets drawn from biomedical and public health literature will be analyzed using statistical computer packages.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 681. Biostatistical Methods II3 Units

Prerequisite(s): PHST 680, enrolled in the MS Biostatistics, PH MPH, or Math major in Graduate School.

Description: This course offers a mathematically sophisticated introduction to simple regression models and analysis of variance. Matrix algebra is required and data analysis will be illustrated drawing examples from biomedical and public health literature.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 682. Multivariate Statistical Analysis3 Units

Prerequisite(s): PHST 681 and enrolled in the MS in Biostatistics or Math major in Graduate School.

Description: The topics covered in this course include the multivariate normal distribution, inference for mean vectors, inference for covariance and correlation matrices, analysis of covariance structure, analysis of serial measurements, factor analysis, and discriminant analysis. Statistical methods and models that are most useful in multivariate data analysis will be introduced. Instruction will also be given in the proper use of R to carry out these analyses.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 683. Survival Analysis3 Units

Prerequisite(s): PHST 681 and enrolled in the MS in Biostatistics or MPH program.

Description: Statistical methods for analyzing survival data. Parametric and nonparametric methods for complete and incomplete data, life-table, KM estimator, accelerated lifetime models, proportional hazard models, log-rank tests, and goodness-of-fit tests.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 684. Categorical Data Analysis3 Units

Prerequisite(s): PHST 501 and enrolled in the MS Biostatistics or MPH program.

Description: Topics include inference for two-way contingency tables, models for binary response variables, log-linear models, models for ordinal data, multinominal response data, Poisson regression and analysis of repeated categorical response data. Emphasis will be placed on methods and models most useful in biomedical and public health research.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 691. Bayesian Inference and Decision3 Units

Prerequisite(s): PHST 681 and enrolled in the PhD or MS in Biostatistics or Math major in Graduate School.

Description: Focuses on the use of Bayesian probability and statistics in both scientific inference and formal decision analysis. The frequency and subjective interpretations of probability are explored, as well as probability and decision making. The course will explore inference for both single-parameter, multiple-parameter, and hierarchical models. A significant amount of time will be devoted to Bayesian computational methods.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 703. Biostatistical Consulting Practicum1-3 Units

Prerequisite(s): Enrollment in the PhD in Biostatistics program and completion of PHST 710, PHST 762, PHST 781, and PHST 691.

Description: In depth practical experience in biostatistical collaboration at the doctoral level, in which a student works with one or more investigators in the health sciences. Students typically engage in the statistical analysis of investigator data sets and are required to generate and present a report to the collaborating investigators.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 704. Mixed Effect Models and Longitudinal Data Analysis3 Units

Prerequisite(s): Enrollment in the PhD in Biostatistics program and PHST 781.

Description: The course focuses on theory and application of linear and nonlinear mixed effect models, particularly, the application of mixed models to longitudinal data analyses.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 710. Advanced Statistical Computing I3 Units

Prerequisite(s): Enrolled in the MS or PhD in Biostatistics and PHST 681.

Description: The intent of this course is to develop knowledge of a statistical programming language and computational methods that are essential to statistics. The course primarily focuses on the R programming language and covers a variety of programming topics related to R (vectorization, data l/O, object-oriented programming, and building R packages). Statistical and computational methods that are covered include visualization (basic and lattice graphics), data smoothing, optimization (Newton-Raphson and EM-algorithm), matrix factorization, simulation (inverse transform and acceptance-rejection methods, power and size of a test), numerical integration, resampling (bootstrap and permutation tests), and other modern statistical methods.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 711. Advanced Statistical Computing II3 Units

Prerequisite(s): Enrolled in the MS or PhD in Biostatistics and PHST 710.

Description: This is a continuation of the statistical programming techniques, skills, and theory covered in PHST 710. The intent of this course is to further develop your ability to perform statistical programming. This includes carrying-out computational tasks, interfering with diverse data types and formats, and writing functions to implement statistical methods. Potential topics include multivariate optimization, C++ programming in R, statistical learning methods, non-parametric smoothing, dimension reduction/variable selection, and Markov Chain Monte Carlo (MCMC) methods. Additionally, the course may cover computing concepts such as cross-validation/resampling, regular expressions, and computing on the R language.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 724. Advanced Clinical Trials3 Units

Prerequisite(s): Enrolled in the PhD in Biostatistics and PHST 624 and PHST 681 or equivalent.

Description: Advanced statistical methods for design and analysis of clinical trials are explored. Content includes design and analysis of complex clinical studies, including phases I, II, and III clinical trials for dichotomous, normally distributed and time-to-event outcomes. SAS, R and EAST will be extensively used.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 725. Design of Experiments3 Units

Prerequisite(s): Enrolled in the PhD in Biostatistics and PHST 681 or equivalent.

Description: The course introduces experimental design principles and covers specific designs in detail. Concepts will be illustrated using examples from the health services and engineering. SAS in R will be extensively used.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 750. Statistics for Bioinformatics3 Units

Prerequisite(s): Enrolled in the PhD in Biostatistics and PHST 661.

Description: This course focuses on the statistical methods and computational tools for analyzing data generated from DNA and protein sequences, genetic maps, and polymorphic marker data. This course will review the basics of genetics/molecular biology and statistical inference and probability needed for analyzing DNA and protein sequences. Covered topics include introduction to stochastic processes, analysis and motif discovery within a single DNA/protein sequence, comparison and alignment of two or more DNA/protein sequences, the foundations of substitution matrices, the statistical underpinnings of BLAST, hidden Markov models, evolutionary models, and phylogenetic trees. This course is developed for individuals interested in pursuing research in computational biology, genomics, and bioinformatics. Students are expected to be familiar with some elementary statistics and probability concepts.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 751. High-throughout Data Analysis3 Units

Prerequisite(s): Enrolled in the PhD in Biostatistics and PHST 661.

Description: The array of high speed, high dimension and highly automated biotechnical equipment including next generation DNA sequencers (NGS), microarray, and metabolomics and proteomic analyzers (mass spectrometers) are all designed to capture and process vast amounts of biological data. All these data generation platforms require customized statistical analyses dealing with high dimensional data. In this course we will introduce the statistical methodologies needed to analyze the data generated by these high-throughput technologies. Covered statistical topics include modern methods for classification, dimension reduction/variable selection methods, and clustering. The course will also cover practical aspects of high-throughput data analysis including microarray data, NGS data, and proteomic mass-spectrometer data.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 752. Statistical Genetics3 Units

Prerequisite(s): Enrolled in the PhD in Biostatistics and PHST 681.

Description: This course covers the principles of Mendelian genetics, linkage analysis, association analysis, and quantitative trait models. The main goal is to provide the students a foundation of the statistical theory of inheritance and enough expertise to analyze and interpret genetic association studies.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 762. Advanced Statistical Inference3 Units

Prerequisite(s): Enrolled in the PhD in Biostatistics and PHST 662.

Description: This course is a mathematically sophisticated introduction to the theory and methods of statistical inference, including point and interval estimation and hypotheses testing. Students will learn fundamental technical tools that are essential to carry out methodological research in the field of Biostatistics. Emphasis will be placed on how to correctly propose statistical methods with desirable properties in a general setting including asymptotic unbiasedness, robust variance estimation and efficiency.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 777. Dissertation Research1-12 Units

Prerequisite(s): Enrolled in the PhD in Biostatistics, satisfactory completion of PhD qualifying examination, and permission of dissertation director.

Description: The PhD student may take a total of up to 24 hours credit for the planning, data collection, analysis, and writing of the research project that results in the doctoral dissertation. PHST 777 must be taken under the direction of the student's major professor. Dissertation research hours are seen as a major component of the doctoral program.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 780. Advanced Nonparametrics3 Units

Prerequisite(s): Enrolled in the PhD in Biostatistics and PHST 662.

Description: This course is a mathematically advanced introduction to theory and methods of nonparametric statistics. The first part of the course covers topics including theory of distribution-free statistics based on ranking, U-statistics, Kolmogorov-Smirnov one-sample statistics, Chi-square goodness-of-fit test, asymptotic relative efficiency. The second part of the course covers nonparametric density and regression estimation based on kernel, splines, local polynomial and wavelet methods.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 781. Advanced Linear Models3 Units

Prerequisite(s): Enrolled in the PhD in Biostatistics and PHST 662.

Description: An introduction to the theory of linear models, with an emphasis on health sciences applications. Topics include projections, distributions of quadratic forms under normality, estimation procedures, general linear hypotheses, estimating and testing linear parametric functions, simultaneous inference, multifactor ANOVA models, and covariance.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 782. Generalized Linear Models3 Units

Prerequisite(s): Enrolled in the PhD in Biostatistics and PHST 781.

Description: The course covers the advanced statistical methods and inferences based on the exponential family of distributions, with linear model, logistic regression model, and log-linear as its special cases. Generalized estimating equations for correlated responses are also covered.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 783. Advanced Survival Analysis3 Units

Prerequisite(s): Enrolled in the PhD in Biostatistics; PHST 662 and PHST 683.

Description: This course is a mathematically advanced introduction to the theory and methods of survival analysis. It offers an in-depth analysis of parametric and non-parametric models for general event-time data. It also provides a brief overview of complex models like multi-state models and competing risks.

For class offerings for a specific term, refer to the Schedule of Classes

PHST 785. Nonlinear Regression3 Units

Prerequisite(s): Enrolled in the PhD in Biostatistics and PHST 781.

Description: The course covers advanced statistical methods for non-linear regressions. Linear models, generalized linear models, and least squares estimates will be reviewed. The least squares estimates, algorithm for obtaining the estimates, statistical inferences, and model diagnostic tests for nonlinear regression models will be covered.

For class offerings for a specific term, refer to the Schedule of Classes